Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \sin x \sin 2x\ dx\ . Then, \]
\[I = \int_0^\frac{\pi}{2} 2 \sin^2 x \cos\ x\ dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} 2\left( 1 - \cos^2 x \right) \cos\ x\ dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( 2 \cos x - 2 \cos^3 x \right) dx\]
\[ \Rightarrow I = \left[ 2\sin x - 2\left( \sin x - \frac{\sin^3 x}{3} \right) \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \left[ 2 - 2\left( 1 - \frac{1}{3} \right) \right] - 0\]
\[ \Rightarrow I = \frac{2}{3}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate each of the following integral:
Solve each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.