Advertisements
Advertisements
प्रश्न
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
उत्तर
L.H.S. = `int (2x + 3)/(x^2 + 3x) "d"x`
Put x2 + 3x = t
∴ (2x + 3) dx = dt
⇒ `int "dt"/"t" = log |"t"|`
⇒ `log |x^2 + 3x| + "C"` = R.H.S.
L.H.S. = R.H.S.
Hence verified.
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate the following integral:
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`