Advertisements
Advertisements
प्रश्न
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
बेरीज
उत्तर
= `int_0^(1/4) sqrt((1 - 4)^(1/2)) "d"x`
= `[(1 - 4x)^(3/2)/((3/2)(-4))]_0^(1/4)`
= `[(1 - 4x)^(3/2)/(-6)]_0^(1/4)`
= `- 1/6 [(1 - 4x)^(3/2)]_0^(1/4)`
= `- 1/6 [(1 - 4(1/4))^(3/2) - [1 - 4(0)]^(3/2)]`
= `- 1/6 [0 - (1)^(3/2)]`
= `- 1/6 (- 1)`
= `1/6`
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]
\[\int_0^1 x\log\left( 1 + 2x \right)dx\]
\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]
\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]
\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]
\[\int_0^\pi \cos x\left| \cos x \right|dx\]
\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]
\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: