Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I }=\int_0^1 x\log\left( 1 + 2x \right)dx\]
Applying integration by parts, we have
\[I = \log\left( 1 + 2x \right)\frac{x^2}{2}_0^1 - \int_0^1 \left( \frac{2}{1 + 2x} \right) \times \frac{x^2}{2}dx\]
\[ = \frac{1}{2}\left( \log3 - 0 \right) - \int_0^1 \frac{x^2}{1 + 2x}dx\]
\[ = \frac{1}{2}\log3 - \frac{1}{4} \int_0^1 \frac{4 x^2 - 1 + 1}{1 + 2x}dx\]
\[ = \frac{1}{2}\log3 - \frac{1}{4} \int_0^1 \frac{\left( 2x + 1 \right)\left( 2x - 1 \right)}{1 + 2x}dx - \frac{1}{4} \int_0^1 \frac{1}{1 + 2x}dx\]
\[ = \frac{1}{2}\log3 - \frac{1}{4} \int_0^1 \left( 2x - 1 \right)dx - \frac{1}{4} \int_0^1 \frac{1}{1 + 2x}dx\]
\[= \left.\frac{1}{2}\log3 - \frac{1}{4} \times \frac{\left( 2x - 1 \right)^2}{2 \times 2}\right|_0^1 - \left.\frac{1}{4} \times \frac{\log\left( 1 + 2x \right)}{2}\right|_0^1 \]
\[ = \frac{1}{2}\log3 - \frac{1}{16}\left( 1 - 1 \right) - \frac{1}{8}\left( \log3 - \log1 \right)\]
\[ = \frac{1}{2}\log3 - 0 - \frac{1}{8}\log3 ....................\left( \log1 = 0 \right)\]
\[ = \frac{3}{8}\log3\]
APPEARS IN
संबंधित प्रश्न
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`