मराठी

∫ 1 0 X Log ( 1 + 2 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]
बेरीज

उत्तर

\[\text{Let I }=\int_0^1 x\log\left( 1 + 2x \right)dx\]

Applying integration by parts, we have

\[I = \log\left( 1 + 2x \right)\frac{x^2}{2}_0^1 - \int_0^1 \left( \frac{2}{1 + 2x} \right) \times \frac{x^2}{2}dx\]
\[ = \frac{1}{2}\left( \log3 - 0 \right) - \int_0^1 \frac{x^2}{1 + 2x}dx\]
\[ = \frac{1}{2}\log3 - \frac{1}{4} \int_0^1 \frac{4 x^2 - 1 + 1}{1 + 2x}dx\]
\[ = \frac{1}{2}\log3 - \frac{1}{4} \int_0^1 \frac{\left( 2x + 1 \right)\left( 2x - 1 \right)}{1 + 2x}dx - \frac{1}{4} \int_0^1 \frac{1}{1 + 2x}dx\]
\[ = \frac{1}{2}\log3 - \frac{1}{4} \int_0^1 \left( 2x - 1 \right)dx - \frac{1}{4} \int_0^1 \frac{1}{1 + 2x}dx\]

\[= \left.\frac{1}{2}\log3 - \frac{1}{4} \times \frac{\left( 2x - 1 \right)^2}{2 \times 2}\right|_0^1 - \left.\frac{1}{4} \times \frac{\log\left( 1 + 2x \right)}{2}\right|_0^1 \]
\[ = \frac{1}{2}\log3 - \frac{1}{16}\left( 1 - 1 \right) - \frac{1}{8}\left( \log3 - \log1 \right)\]
\[ = \frac{1}{2}\log3 - 0 - \frac{1}{8}\log3 ....................\left( \log1 = 0 \right)\]
\[ = \frac{3}{8}\log3\]

 

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 65 | पृष्ठ १८

संबंधित प्रश्‍न

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Choose the correct alternative:

`Γ(3/2)`


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×