Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]
\[ = \int_0^\frac{\pi}{4} \left[ a^2 \left( \frac{1 + \cos2x}{2} \right) + b^2 \left( \frac{1 - \cos2x}{2} \right) \right]dx\]
\[ = \int_0^\frac{\pi}{4} \left[ \left( \frac{a^2 + b^2}{2} \right) + \left( \frac{a^2 - b^2}{2} \right)\cos2x \right]dx\]
\[ = \left( \frac{a^2 + b^2}{2} \right) \int_0^\frac{\pi}{4} dx + \left( \frac{a^2 - b^2}{2} \right) \int_0^\frac{\pi}{4} \cos2xdx\]
\[= \left.\left( \frac{a^2 + b^2}{2} \right) \times x\right|_0^\frac{\pi}{4} + \left.\left( \frac{a^2 - b^2}{2} \right) \times \frac{\sin2x}{2}\right|_0^\frac{\pi}{4} \]
\[ = \left( \frac{a^2 + b^2}{2} \right)\left( \frac{\pi}{4} - 0 \right) + \left( \frac{a^2 - b^2}{4} \right)\left( \sin\frac{\pi}{2} - \sin0 \right)\]
\[ = \left( \frac{a^2 + b^2}{2} \right)\frac{\pi}{4} + \left( \frac{a^2 - b^2}{4} \right)\left( 1 - 0 \right)\]
\[ = \left( a^2 + b^2 \right)\frac{\pi}{8} + \frac{1}{4}\left( a^2 - b^2 \right)\]
APPEARS IN
संबंधित प्रश्न
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
Γ(4)
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
Γ(n) is