मराठी

∫ π 4 0 ( a 2 Cos 2 X + B 2 Sin 2 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]
बेरीज

उत्तर

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]
\[ = \int_0^\frac{\pi}{4} \left[ a^2 \left( \frac{1 + \cos2x}{2} \right) + b^2 \left( \frac{1 - \cos2x}{2} \right) \right]dx\]
\[ = \int_0^\frac{\pi}{4} \left[ \left( \frac{a^2 + b^2}{2} \right) + \left( \frac{a^2 - b^2}{2} \right)\cos2x \right]dx\]
\[ = \left( \frac{a^2 + b^2}{2} \right) \int_0^\frac{\pi}{4} dx + \left( \frac{a^2 - b^2}{2} \right) \int_0^\frac{\pi}{4} \cos2xdx\]

\[= \left.\left( \frac{a^2 + b^2}{2} \right) \times x\right|_0^\frac{\pi}{4} + \left.\left( \frac{a^2 - b^2}{2} \right) \times \frac{\sin2x}{2}\right|_0^\frac{\pi}{4} \]
\[ = \left( \frac{a^2 + b^2}{2} \right)\left( \frac{\pi}{4} - 0 \right) + \left( \frac{a^2 - b^2}{4} \right)\left( \sin\frac{\pi}{2} - \sin0 \right)\]
\[ = \left( \frac{a^2 + b^2}{2} \right)\frac{\pi}{4} + \left( \frac{a^2 - b^2}{4} \right)\left( 1 - 0 \right)\]
\[ = \left( a^2 + b^2 \right)\frac{\pi}{8} + \frac{1}{4}\left( a^2 - b^2 \right)\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 67 | पृष्ठ १८

संबंधित प्रश्‍न

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int_0^2 2x\left[ x \right]dx\]

\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


`int_0^(2a)f(x)dx`


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


\[\int\limits_0^4 x dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following:

Γ(4)


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Choose the correct alternative:

Γ(n) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×