Advertisements
Advertisements
प्रश्न
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
बेरीज
उत्तर
Let f(x = `log (2 - x)/(2 + x))`
f(– x) = `log ((2 - (- x))/(2 + (– x)))`
= `log ((2 + x)/(2 - x))`
= `log ((2 - x)/(2 + x))^-1`
= `- log ((2 - x)/(2 + x))`
⇒ (fx) = – f(x)
∴ f(x) is an odd function
∴ `int_(-1)^1 log ((2 - x)/(2 + x)) "d"x` = 0
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{\pi/4} \sec x dx\]
\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]
\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]
\[\int\limits_0^5 \left( x + 1 \right) dx\]
\[\int\limits_0^2 \left[ x \right] dx .\]
\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.