Advertisements
Advertisements
प्रश्न
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
बेरीज
उत्तर
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}`
⇒ `int_0^1 "f"(x) "d"x` = 2
⇒ `int_0^2 "c"x "d"x` = 2
`"c"[x^2/2]_0^1` = 2
`"c"[1/2 - 0]` = 2
`1/2` = 2
⇒ c = 4
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
\[\int\limits_0^\pi x \sin^3 x\ dx\]
\[\int\limits_0^{\pi/2} \sin x\ dx\]
\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\] is equal to ______.
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is