Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
उत्तर
\[Let, I = \int_0^\pi x \sin x \cos^4 x d x ............(1)\]
\[ = \int_0^\pi \left( \pi - x \right) \sin\left( \pi - x \right) \cos^4 \left( \pi - x \right) d x \]
\[ = \int_0^\pi \left( \pi - x \right) \sin x \cos^4 x d x ..............(2)\]
Adding (1) and (2)
\[2I = \int_0^\pi \left[ x \sin x \cos^4 x + \left( \pi - x \right) \sin x \cos^4 x \right] d x \]
\[ = \int_0^\pi \left( x + \pi - x \right) \sin x \cos^4 x d x \]
\[ = \pi \int_0^\pi \sin x \cos^4 x d x \]
\[ = \pi \left[ \frac{- \cos^5 x}{5} \right]_0^\pi \]
\[ = \pi\left[ \frac{1}{5} + \frac{1}{5} \right]\]
\[ = \frac{2\pi}{5}\]
\[Hence, I = \frac{\pi}{5}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
Γ(1) is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.