मराठी

( π ) 2 / 3 ∫ 0 √ X Cos 2 X 3 / 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]

उत्तर

\[Let\ I = \int_0^{( \pi )^\frac{2}{3}} \sqrt{x} \cos^2 x^\frac{3}{2} d x . Then, \]
\[Let\ x^\frac{3}{2} = t . Then, \frac{3}{2}\sqrt{x} dx = dt\]
\[When\ x = 0, t = 0\ and\ x = \left( \pi \right)^\frac{2}{3} , t = \pi\]
\[ \therefore I = \frac{2}{3} \int_0^\pi \cos^2 t dt\]
\[ \Rightarrow I = \frac{2}{3} \int_0^\pi \frac{1 + \cos 2x}{2} dx\]
\[ \Rightarrow I = \frac{1}{3} \left[ x + \frac{\sin 2x}{2} \right]_0^\pi \]
\[ \Rightarrow I = \frac{1}{3}\left( \pi + 0 \right)\]
\[ \Rightarrow I = \frac{\pi}{3}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.2 | Q 44 | पृष्ठ ३९

संबंधित प्रश्‍न

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]


\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


`int x^3/(x + 1)` is equal to ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×