Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 1, b = 4, f\left( x \right) = x^2 - x, h = \frac{4 - 1}{n} = \frac{3}{n}\]
Therefore,
\[I = \int_1^4 \left( x^2 - x \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 1 \right) + f\left( 1 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 1 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 1 - 1 \right) + \left( 1 + h \right)^2 - \left( 1 + h \right) + . . . . . . . . . . . . . . . + \left\{ \left( n - 1 \right)h + 1 \right\}^2 - \left\{ \left( n - 1 \right)h + 1 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ h^2 \left\{ 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right\} - h\left\{ 1 + 2 + . . . . . . . + \left( n - 1 \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} - h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{3}{n}\left[ \frac{3\left( n - 1 \right)\left( 2n - 1 \right)}{2n} + \frac{3\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} 3\left[ \frac{3}{2}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) + \frac{3}{2}\left( 1 - \frac{1}{n} \right) \right]\]
\[ = 9 + \frac{9}{3}\]
\[ = \frac{38}{3}\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate the following integral:
Evaluate the following integral:
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`