Advertisements
Advertisements
प्रश्न
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
उत्तर
We have `int_"a"^"b" "f"(x) "d"x = lim_(("n" -> oo),("h" -> 0)) sum_("r" = 1)^"n" "hf" ("a" + "rh")`
Here a = 1
b = 3
h = `("b" - "a")/"n"`
= `(3 - 1)/"n"`
= `2/"n"`
f(x) = x
f(a + rh) `"f"(1+ (2"r")/"n")`
`int_1^3 x "d"x = lim_("n" -> oo) sum_("r"= 1)^"n" 2/"n"(1 + (2"r")/"n")`
= `lim_("n" -> oo) sum_("r" = 1)^"n" (2/"n" +(4"r")/"n"^2)`
= `lim_("n" -> oo) [2/"n" sum1 + 4/"n"^2 sum"r]`
= `lim_("n" -> oo) [2/"n" ("n") + 4/"n"^2 (("n"("n" + 1))/2)]`
= `lim_("n" -> oo) [2 + 2(1 + 1/"n")]`
= 2 + 2(1 + 0)
= 2 + 2
= 4
APPEARS IN
संबंधित प्रश्न
If f(x) is a continuous function defined on [−a, a], then prove that
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: