मराठी

∫ π 2 0 Cos 2 X 1 + 3 Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]
बेरीज

उत्तर

\[Let\ I = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3\left( 1 - \cos^2 x \right)}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{4 - 3 \cos^2 x}dx\]
\[ = - \frac{1}{3} \int_0^\frac{\pi}{2} \frac{4 - 3 \cos^2 x - 4}{4 - 3 \cos^2 x}dx\]

\[= - \frac{1}{3} \int_0^\frac{\pi}{2} dx + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{1}{4 - 3 \cos^2 x}dx\]
\[ = \left.- \frac{1}{3} x\right|_0^\frac{\pi}{2} + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{\sec^2 x}{4 \sec^2 x - 3}dx ..............\left( \text{Dividing numerator and denominator by} \cos^2 x \right)\]
\[ = - \frac{1}{3}\left( \frac{\pi}{2} - 0 \right) + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{\sec^2 x}{4\left( 1 + \tan^2 x \right) - 3}dx\]
\[ = - \frac{\pi}{6} + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{\sec^2 x}{4 \tan^2 x + 1}dx\]
Put tanx = z
\[\therefore \sec^2 xdx = dz\]
When
\[x \to 0, z \to 0\]
When
\[x \to \frac{\pi}{2}, z \to \infty\]
\[\therefore I = - \frac{\pi}{6} + \frac{4}{3} \int_0^\infty \frac{dz}{4 z^2 + 1}\]
\[ = - \frac{\pi}{6} + \frac{4}{3} \int_0^\infty \frac{dz}{\left( 2z \right)^2 + 1}\]
\[ = \left.- \frac{\pi}{6} + \frac{4}{3} \times \frac{\tan^{- 1} 2z}{2}\right|_0^\infty \]
\[ = - \frac{\pi}{6} + \frac{2}{3}\left( \tan^{- 1} \infty - \tan^{- 1} 0 \right)\]
\[ = - \frac{\pi}{6} + \frac{2}{3}\left( \frac{\pi}{2} - 0 \right)\]
\[ = - \frac{\pi}{6} + \frac{\pi}{3}\]
\[ = \frac{\pi}{6}\]
shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.2 | Q 40 | पृष्ठ ३९

संबंधित प्रश्‍न

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×