Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{2\pi} \cos^7 x dx\]
उत्तर
\[Let, I = \int_0^{2\pi} \cos^7 x d x ..............(1)\]
\[ = \int_0^{2\pi} \cos^7 \left( 2\pi - x \right) d x\]
\[ = \int_0^{2\pi} - \cos^7 x d x\]
\[ \Rightarrow I = - \int_0^{2\pi} \cos^7 x d x ..............(2)\]
Adding (1) and (2) we get,
\[ 2I = \int_0^{2\pi} \cos^7 x d x - \int_0^{2\pi} \cos^7 x d x\]
\[ \Rightarrow 2I = 0\]
\[ \therefore I = 0\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate the following integral:
Evaluate the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
Γ(1) is
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.