Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[I = \int_{- 3}^3 \left| x + 1 \right| d x\]
\[We\ know\ that, \left| x + 1 \right| = \begin{cases} - \left( x + 1 \right) &, &- 3 \leq x \leq - 1 \\x + 1 &, &- 1 < x \leq 3\end{cases}\]
\[ \therefore I = \int_{- 3}^{- 1} - \left( x + 1 \right) d x + \int_{- 1}^3 \left[ x + 1 \right] d x\]
\[ \Rightarrow I = \left[ - \frac{\left( x + 1 \right)^2}{2} \right]_{- 3}^{- 1} + \left[ \frac{\left( x + 1 \right)^2}{2} \right]_{- 1}^3 \]
\[ \Rightarrow I = 0 + 2 + 8 - 0\]
\[ \Rightarrow I = 10\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Evaluate the following:
Γ(4)
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`