Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} d\ x . Then, \]
\[Let\ x^2 = t . Then, 2x\ dx = dt\]
\[When\ x = , t = 0\ and\ x = 1, t = 1\]
\[ \therefore I = \int_0^1 \frac{12t}{\left( 1 + t \right)^4} dt\]
\[\text{Integrating by parts}\]
\[I = 12 \left[ \frac{t}{- 3 \left( 1 + t \right)^3} \right]_0^1 + 12 \int_0^1 \frac{1}{3 \left( 1 + t \right)^3}dt\]
\[ \Rightarrow I = 12\left\{ \left[ \frac{t}{- 3 \left( 1 + t \right)^3} \right]_0^1 - \left[ \frac{1}{6 \left( 1 + t \right)^2} \right]_0^1 \right\}\]
\[ \Rightarrow I = 12\left\{ - \frac{1}{24} - 0 - \frac{1}{24} + \frac{1}{6} \right\}\]
\[ \Rightarrow I = 12 \times \frac{1}{12}\]
\[ \Rightarrow I = 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
`int_0^(2a)f(x)dx`
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is