Advertisements
Advertisements
प्रश्न
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
उत्तर
\[Let I = \int_1^5 \frac{x}{\sqrt{2x - 1}} d x\]
\[Let, 2x - 1 = t,\text{ then }2dx = dt, \]
\[\text{When, }x \to 1 ; t \to 1\text{ and x to 5; } t \to 9\]
\[x = \frac{t + 1}{2}\]
\[I = \frac{1}{2} \int_1^9 \frac{t + 1}{\sqrt{t}} \times \frac{dt}{2}\]
\[ = \frac{1}{4} \left[ \frac{2 t^\frac{3}{2}}{3} + 2\sqrt{t} \right]_1^9 \]
\[ = \frac{1}{4}\left[ 18 + 6 - \frac{2}{3} - 2 \right]\]
\[ = \frac{16}{3}\]
APPEARS IN
संबंधित प्रश्न
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Write the coefficient a, b, c of which the value of the integral
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Choose the correct alternative:
Γ(1) is
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.