Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\, I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right) d \theta\]
\[Here\, f\left( \theta \right) = \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)\]
\[Consider\, f\left( - \theta \right) = \log\left[ \frac{a - \sin\left( - \theta \right)}{a + \sin\left( - \theta \right)} \right] = - \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right) = - f\left( \theta \right)\]
\[i . e . , f\left( \theta \right) \text{is odd function} . \]
\[\text{Therefore}, I = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is