Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
पर्याय
1
`2 int_0^1 x^3 "e"^(x^4) "d"x`
0
`"e"^(x^4)`
MCQ
उत्तर
0
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]
\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]
\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]
\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]
\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]
\[\int\limits_0^{\pi/2} \sin x\ dx\]
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_0^1 e^\left\{ x \right\} dx .\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.