मराठी

Ed∫ex(1-x1+x2)2 dx is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.

पर्याय

  • `"e"^x/(1 + x^2) + "C"`

  • `(-"e"^x)/(1 + x^2) + "C"`

  • `"e"^x/(1 + x^2)^2 + "C"`

  • `(-"e"^x)/(1 + x^2)^2 + "C"`

MCQ
रिकाम्या जागा भरा

उत्तर

`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to `"e"^x/(1 + x^2) + "C"`.

Explanation:

Let I = `int "e"^x ((1 - x)/(1 + x^2))^2  "d"x`

= `int "e"^x [(1 + x^2 - 2x)/(1 + x^2)^2]"d"x`

= `int "e"^x [((1 + x^2))/(1 + x^2)^2 - (2x)/(1 + x^2)^2]"d"x`

= `int "e"^x [1/(1 + x^2) - (2x)/(1 + x^2)^2]"d"x`

Here f(x) = `1/(1 + x^2)`

∴ f'(x) = `(-2x)/(1 + x^2)^2`

Using `int "e"^x ["f"(x) + "f'"(x)]"d"x = "e"^x * "f"(x) + "C"`

∴ I = `"e"^x * 1/(1 + x^2) + "C" = "e"^x/(1 + x^2) + "C"`

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 51 | पृष्ठ १६७

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Evaluate the following:

Γ(4)


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Find: `int logx/(1 + log x)^2 dx`


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×