Advertisements
Advertisements
प्रश्न
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
पर्याय
`"e"^x/(1 + x^2) + "C"`
`(-"e"^x)/(1 + x^2) + "C"`
`"e"^x/(1 + x^2)^2 + "C"`
`(-"e"^x)/(1 + x^2)^2 + "C"`
उत्तर
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to `"e"^x/(1 + x^2) + "C"`.
Explanation:
Let I = `int "e"^x ((1 - x)/(1 + x^2))^2 "d"x`
= `int "e"^x [(1 + x^2 - 2x)/(1 + x^2)^2]"d"x`
= `int "e"^x [((1 + x^2))/(1 + x^2)^2 - (2x)/(1 + x^2)^2]"d"x`
= `int "e"^x [1/(1 + x^2) - (2x)/(1 + x^2)^2]"d"x`
Here f(x) = `1/(1 + x^2)`
∴ f'(x) = `(-2x)/(1 + x^2)^2`
Using `int "e"^x ["f"(x) + "f'"(x)]"d"x = "e"^x * "f"(x) + "C"`
∴ I = `"e"^x * 1/(1 + x^2) + "C" = "e"^x/(1 + x^2) + "C"`
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
Γ(4)
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Find: `int logx/(1 + log x)^2 dx`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`