Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^\frac{\pi}{2} \left( 2 \log \cos x - \log\sin2x \right) d x\]
\[ = \int_0^\frac{\pi}{2} \left[ 2 \log \cos x - \log\left( 2\sin x \cos x \right) \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left( 2\log\cos x - \log2 - \log\sin x - \log\cos x \right)dx\]
\[ = \int_0^\frac{\pi}{2} \left( \log\cos x - \log2 - \log\sin x \right)dx\]
\[ = \int_0^\frac{\pi}{2} \log\cos x dx - \int_0^\frac{\pi}{2} \log2 dx - \int_0^\frac{\pi}{2} \log\sin x dx\]
\[ = \int_0^\frac{\pi}{2} \log\cos x dx - \int_0^\frac{\pi}{2} \log2 dx - \int_0^\frac{\pi}{2} \log\sin\left( \frac{\pi}{2} - x \right) dx ..........................\left[\text{Using }\int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx \right]\]
\[ = \int_0^\frac{\pi}{2} \log\cos x dx - \int_0^\frac{\pi}{2} \log2 dx - \int_0^\frac{\pi}{2} \log\cos x dx\]
\[ = - \log2 \left[ x \right]_0^\frac{\pi}{2} \]
\[ = - \frac{\pi}{2} \log2\]
APPEARS IN
संबंधित प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
`int_0^(2a)f(x)dx`
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.