Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
पर्याय
- \[\frac{1}{3} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
- \[\frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
- \[\sqrt{3} \tan^{- 1} \left( \sqrt{3} \right)\]
- \[2\sqrt{3} \tan^{- 1} \sqrt{3}\]
उत्तर
\[\text{We have}, \]
\[I = \int_0^\frac{\pi}{2} \frac{1}{2 + \cos x} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{2 + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{2 + 2 \tan^2 \frac{x}{2} + 1 - \tan^2 \frac{x}{2}}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{3 + \tan^2 \frac{x}{2}}dx\]
\[\text{Putting} \tan \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]
\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]
\[When, x \to 0; t \to 0\]
\[and x \to \frac{\pi}{2}; t \to 1\]
\[ \therefore I = \int_0^1 \frac{2}{3 + t^2}dt\]
\[ = 2 \int_0^1 \frac{1}{\left( \sqrt{3} \right)^2 + t^2}dt\]
\[ = \frac{2}{\sqrt{3}} \left[ \tan^{- 1} \frac{t}{\sqrt{3}} \right]_0^1 \]
\[ = \frac{2}{\sqrt{3}}\left[ \tan^{- 1} \frac{1}{\sqrt{3}} - \tan^{- 1} \frac{0}{\sqrt{3}} \right]\]
\[ = \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`