Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_4^{12} x \left( x - 4 \right)^\frac{1}{3} d x . \]
\[Let\ x - 4 = t . Then, dx = dt\]
\[When\ x = 4, t = 0\ and\ x\ = 12, t = 8\]
\[ \therefore I = \int_0^8 \left( t + 4 \right) t^\frac{1}{3} dt\]
\[ \Rightarrow I = \int_0^8 \left( t^\frac{4}{3} + 4 t^\frac{1}{3} \right) dt\]
\[ \Rightarrow I = \left[ \frac{3}{7} t^\frac{7}{3} + \frac{3}{1} t^\frac{4}{3} \right]_0^8 \]
\[ \Rightarrow I = \frac{384}{7} + 48\]
\[ \Rightarrow I = \frac{720}{7}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.