मराठी

∫ π 3 π 6 ( Tan X + Cot X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]
बेरीज

उत्तर

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan^2 x + \cot^2 x + 2\tan x\cot x \right)dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \left( \sec^2 x - 1 + {cosec}^2 x - 1 + 2 \right)dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \sec^2 xdx + \int_\frac{\pi}{6}^\frac{\pi}{3} {cosec}^2 xdx\]

\[= \left.\tan x\right|_\frac{\pi}{6}^\frac{\pi}{3} + \left.\left( - \cot x \right)\right|_\frac{\pi}{6}^\frac{\pi}{3} \]
\[ = \left( \tan\frac{\pi}{3} - \tan\frac{\pi}{6} \right) - \left( \cot\frac{\pi}{3} - \cot\frac{\pi}{6} \right)\]
\[ = \left( \sqrt{3} - \frac{1}{\sqrt{3}} \right) - \left( \frac{1}{\sqrt{3}} - \sqrt{3} \right)\]
\[ = 2\sqrt{3} - \frac{2}{\sqrt{3}}\]
\[ = \frac{4}{\sqrt{3}}\]

 

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 66 | पृष्ठ १८

संबंधित प्रश्‍न

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×