Advertisements
Advertisements
प्रश्न
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
बेरीज
उत्तर
`int_0^3 ("e"^x "d"x)/(1 + "e"^x) = {log |1 + "e"x|}_0^3`
= log |1 + e3| – log |1 + e°|
= log |1 + e3| – log |1 + 1|
= log |1 + e3| – log |2|
= `log |(1 + "e"^3)/2|`
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]
\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]
\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]
\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]
\[\int\limits_0^\pi x \log \sin x\ dx\]
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`