Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]
\[ = \int_0^\frac{\pi}{4} \frac{1}{\left( \tan x + \cot x \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{1}{\left( \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{1}{\left( \frac{\sin^2 x + \cos^2 x}{\sin x\cos x} \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \sin^2 x \cos^2 xdx\]
\[= \frac{1}{4} \int_0^\frac{\pi}{4} \left( 2\sin x\cos x \right)^2 dx\]
\[ = \frac{1}{4} \int_0^\frac{\pi}{4} \sin^2 2xdx\]
\[ = \frac{1}{4} \int_0^\frac{\pi}{4} \left( \frac{1 - \cos4x}{2} \right)dx\]
\[ = \frac{1}{8} \int_0^\frac{\pi}{4} dx - \frac{1}{8} \int_0^\frac{\pi}{4} \cos4xdx\]
\[ = \left.\frac{1}{8} x\right|_0^\frac{\pi}{4} - \left.\frac{1}{8} \left( \frac{\sin4x}{4} \right)\right|_0^\frac{\pi}{4}\]
\[= \frac{1}{8}\left( \frac{\pi}{4} - 0 \right) - \frac{1}{32}\left(\sin \pi - \sin0 \right)\]
\[ = \frac{\pi}{32} - \frac{1}{32} \times \left( 0 - 0 \right)\]
\[ = \frac{\pi}{32}\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.