मराठी

∫ 2 π 0 √ 1 + Sin X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]
बेरीज

उत्तर

\[I = \int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]
\[ = \int_0^{2\pi} \sqrt{\cos^2 \frac{x}{4} + \sin^2 \frac{x}{4} + 2\sin\frac{x}{4}\cos\frac{x}{4}}dx\]
\[ = \int_0^{2\pi} \sqrt{\left( \cos\frac{x}{4} + \sin\frac{x}{4} \right)^2}dx\]
\[ = \int_0^{2\pi} \left| \cos\frac{x}{4} + \sin\frac{x}{4} \right|dx\]

When

\[0 \leq x \leq 2\pi\]
\[0 \leq \frac{x}{4} \leq \frac{\pi}{2}\]

\[\therefore \sin\frac{x}{4} \geq 0, \cos\frac{x}{4} \geq 0\]
\[ \Rightarrow \cos\frac{x}{4} + \sin\frac{x}{4} \geq 0\]
\[ \Rightarrow \left| \cos\frac{x}{4} + \sin\frac{x}{4} \right| = \cos\frac{x}{4} + \sin\frac{x}{4}\]

\[\therefore I = \int_0^{2\pi} \left( \cos\frac{x}{4} + \sin\frac{x}{4} \right)dx\]
\[=\left.\frac{\sin\frac{x}{4}}{\frac{1}{4}}\right|_0^{2\pi} + \left.\frac{\left( - \cos\frac{x}{4} \right)}{\frac{1}{4}}\right|_0^{2\pi} \]
\[ = 4\left( \sin\frac{\pi}{2} - \sin0 \right) - 4\left( \cos\frac{\pi}{2} - \cos0 \right)\]
\[ = 4\left( 1 - 0 \right) - 4\left( 0 - 1 \right)\]
\[ = 4 + 4\]
\[ = 8\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 63 | पृष्ठ १८

संबंधित प्रश्‍न

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×