Advertisements
Advertisements
प्रश्न
उत्तर
\[I = \int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]
\[ = \int_0^{2\pi} \sqrt{\cos^2 \frac{x}{4} + \sin^2 \frac{x}{4} + 2\sin\frac{x}{4}\cos\frac{x}{4}}dx\]
\[ = \int_0^{2\pi} \sqrt{\left( \cos\frac{x}{4} + \sin\frac{x}{4} \right)^2}dx\]
\[ = \int_0^{2\pi} \left| \cos\frac{x}{4} + \sin\frac{x}{4} \right|dx\]
When
\[\therefore \sin\frac{x}{4} \geq 0, \cos\frac{x}{4} \geq 0\]
\[ \Rightarrow \cos\frac{x}{4} + \sin\frac{x}{4} \geq 0\]
\[ \Rightarrow \left| \cos\frac{x}{4} + \sin\frac{x}{4} \right| = \cos\frac{x}{4} + \sin\frac{x}{4}\]
\[\therefore I = \int_0^{2\pi} \left( \cos\frac{x}{4} + \sin\frac{x}{4} \right)dx\]
\[=\left.\frac{\sin\frac{x}{4}}{\frac{1}{4}}\right|_0^{2\pi} + \left.\frac{\left( - \cos\frac{x}{4} \right)}{\frac{1}{4}}\right|_0^{2\pi} \]
\[ = 4\left( \sin\frac{\pi}{2} - \sin0 \right) - 4\left( \cos\frac{\pi}{2} - \cos0 \right)\]
\[ = 4\left( 1 - 0 \right) - 4\left( 0 - 1 \right)\]
\[ = 4 + 4\]
\[ = 8\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate the following integral:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: