Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
उत्तर
\[\int_0^\pi \cos2x \log\sin x d x\]
\[ = \left[ \log\sin x \frac{\sin2x}{2} \right]_0^\pi - \int_0^\pi \frac{\cos x}{\sin x}\frac{\sin2x}{2} dx\]
\[ = \left[ \log\sin x \frac{\sin2x}{2} \right]_0^\pi - \int_0^\pi \cos^2 x dx\]
\[ = \left[ \log\sin x \frac{\sin2x}{2} \right]_0^\pi - \int_0^\pi \frac{1 + \cos2x}{2}dx\]
\[ = \left[ \log\sin x \frac{\sin2x}{2} \right]_0^\pi - \frac{1}{2} \left[ x + \frac{\sin2x}{2} \right]_0^\pi \]
\[ = 0 - \frac{1}{2}\left( \pi + 0 \right)\]
\[ = - \frac{\pi}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
If f is an integrable function, show that
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
Write the coefficient a, b, c of which the value of the integral
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`