Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
उत्तर
\[\int_0^\frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) d x\]
\[Let x = \tan\theta,\text{ then }dx = \sec^2 \theta d\theta\]
\[\text{When, }x \to 0 ; \theta \to 0\]
\[\text{And }x \to \frac{1}{\sqrt{3}} ; \theta \to \frac{\pi}{6}\]
Therefore the integral becomes
\[ \int_0^\frac{\pi}{6} \tan^{- 1} \left( \frac{3\tan\theta - \tan^3 \theta}{1 - 3 \tan^2 \theta} \right)se c^2 \theta d\theta\]
\[ = \int_0^\frac{\pi}{6} \tan^{- 1} \left( \tan3\theta \right)se c^2 \theta d\theta\]
\[ = 3 \int_0^\frac{\pi}{6} \theta se c^2 \theta d\theta\]
\[ = 3 \left[ \theta \tan\theta \right]_0^\frac{\pi}{6} - 3 \int_0^\frac{\pi}{6} \tan\theta d\theta\]
\[ = 3 \left[ \theta \tan\theta \right]_0^\frac{\pi}{6} - 3 \left[ - \log\left( \cos\theta \right) \right]_0^\frac{\pi}{6} \]
\[\]
\[ = 3\left( \frac{\pi}{6} \times \frac{1}{\sqrt{3}} - 0 \right) + 3\left[ \log\frac{\sqrt{3}}{2} \right]\]
\[ = \frac{\pi}{2\sqrt{3}} + 3\log\frac{\sqrt{3}}{2}\]
\[ = \frac{\pi}{2\sqrt{3}} - \frac{3}{2}\log\frac{4}{3}\]
APPEARS IN
संबंधित प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
Γ(1) is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`