Advertisements
Advertisements
प्रश्न
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
पर्याय
3
6
9
1
उत्तर
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to 9.
Explanation:
Since x = `int_0^y "dt"/sqrt(1 + 9"t"^2)`
⇒ `"dx"/"dy" = 1/sqrt(1 + 9y^2)`
which gives `("d"^2y)/("dx"^2) = (18y)/(2sqrt(1 + 9y^2)) * "dy"/"dx"`
= 9y.
APPEARS IN
संबंधित प्रश्न
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
`int x^3/(x + 1)` is equal to ______.