Advertisements
Advertisements
प्रश्न
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
उत्तर
\[Let I = \int\limits_0^\pi \frac{x}{1 + \sin\alpha \sin x}dx\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi - x}{1 + \sin\alpha \sin\left( \pi - x \right)}dx \left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi}{1 + \sin\alpha \sin x}dx - \int\limits_0^\pi \frac{x}{1 + \sin\alpha \sin x}dx\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi}{1 + \sin\alpha \sin x}dx - I\]
\[ \Rightarrow 2I = \int\limits_0^\pi \frac{\pi}{1 + \sin\alpha \sin x}dx\]
\[ \Rightarrow 2I = \pi \int\limits_0^\pi \frac{1}{1 + sin\alpha sin x}dx\]
\[\text { Substituting }\sin x = \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}}, \text { we get }\]
\[2I = \pi \int\limits_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + sin\alpha \times 2\tan\frac{x}{2}}dx\]
\[I = \frac{\pi}{2} \int\limits_0^\pi \frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + \sin\alpha \times 2\tan\frac{x}{2}}dx\]
\[\text { Let } \tan\frac{x}{2} = t, d\left( \tan\frac{x}{2} \right) = dt \Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]
\[\text { Also }, \]
\[\text { When } x \to 0, t \to \tan0 = 0\]
\[\text { When } x \to \pi, t \to \tan\frac{\pi}{2} = \infty \]
\[ \therefore I = \frac{\pi}{2} \int\limits_0^\infty \frac{2dt}{t^2 + 2t\sin\alpha + 1}\]
\[ \Rightarrow I = \pi \int\limits_0^\infty \frac{1}{\left( t + \sin\alpha \right)^2 + \cos^2 \alpha}dt\]
\[ \Rightarrow I = \frac{\pi}{\cos\alpha} \left[ \tan^{- 1} \left( \frac{t + \sin\alpha}{\cos\alpha} \right) \right]_0^\infty \]
\[ \Rightarrow I = \frac{\pi}{\cos\alpha}\left[ \tan^{- 1} \infty - \tan^{- 1} \left( \tan\alpha \right) \right]\]
\[ \Rightarrow I = \frac{\pi}{\cos\alpha}\left( \frac{\pi}{2} - \alpha \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Choose the correct alternative:
`Γ(3/2)`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.