मराठी

1 ∫ 0 Tan − 1 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \tan^{- 1} x dx\]

बेरीज

उत्तर

\[\int_0^1 \tan^{- 1} x d x\]

\[ = \int_0^1 \tan^{- 1} x \times 1 d x\]

\[ = \left[ \tan^{- 1} x x \right]_0^1 - \int_0^1 \frac{x}{1 + x^2}dx\]

\[ = \left[ x \tan^{- 1} x \right]_0^1 - \frac{1}{2} \left[ \log\left( 1 + x^2 \right) \right]_0^1 \]

\[ = \frac{\pi}{4} - 0 - \frac{1}{2}\log2 + 0\]

\[ = \frac{\pi}{4} - \frac{1}{2}\log2\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Revision Exercise [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Revision Exercise | Q 5 | पृष्ठ १२१

संबंधित प्रश्‍न

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Choose the correct alternative:

`Γ(3/2)`


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×