मराठी

Π / 2 ∫ π / 4 Cot X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]

उत्तर

\[Let\ I = \int_\frac{\pi}{4}^\frac{\pi}{2} \cot x\ d\ x\ . Then, \]
\[I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \cot x\frac{- (cosec x + \cot x)}{cosec x + \cot x} dx\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - \cot^2 x}{cosec x + \cot x} dx\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - {cosec}^2 x + 1}{cosec x + \cot x} dx \left[ \because {cosec}^2 x = 1 + \cot^2 x \right]\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - {cosec}^2 x}{cosec x + \cot x} dx - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{1}{cosec x + \cot x}dx\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - {cosec}^2 x}{cosec x + \cot x} dx - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{\sin x}{1 + \cos x}dx\]
\[ \Rightarrow I = - \left[ \log \left( cosec x + \cot x \right) \right]_\frac{\pi}{4}^\frac{\pi}{2} + \left[ \log \left( 1 + \cos x \right) \right]_\frac{\pi}{4}^\frac{\pi}{2} \]
\[ \Rightarrow I = - \log \left( 1 + \infty \right) + \log \left( \sqrt{2} + 1 \right) + \log \left( 1 + 0 \right) - \log \left( 1 + \frac{1}{\sqrt{2}} \right)\]
\[ \Rightarrow I = \log \left( \sqrt{2} + 1 \right) - \log \left( \frac{\sqrt{2} + 1}{\sqrt{2}} \right)\]
\[ \Rightarrow I = \log \left( \frac{\sqrt{2}\left( \sqrt{2} + 1 \right)}{\left( \sqrt{2} + 1 \right)} \right)\]
\[ \Rightarrow I = \log\sqrt{2}\]
\[ \Rightarrow I = \frac{1}{2}\log 2\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 11 | पृष्ठ १६

संबंधित प्रश्‍न

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

\[\int\limits_1^e \log x\ dx =\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_2^3 e^{- x} dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Evaluate the following:

`Γ (9/2)`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×