Advertisements
Advertisements
प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
उत्तर
\[Let\ I = \int_\frac{\pi}{4}^\frac{\pi}{2} \cot x\ d\ x\ . Then, \]
\[I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \cot x\frac{- (cosec x + \cot x)}{cosec x + \cot x} dx\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - \cot^2 x}{cosec x + \cot x} dx\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - {cosec}^2 x + 1}{cosec x + \cot x} dx \left[ \because {cosec}^2 x = 1 + \cot^2 x \right]\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - {cosec}^2 x}{cosec x + \cot x} dx - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{1}{cosec x + \cot x}dx\]
\[ \Rightarrow I = - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{- cosec x \cot x - {cosec}^2 x}{cosec x + \cot x} dx - \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{\sin x}{1 + \cos x}dx\]
\[ \Rightarrow I = - \left[ \log \left( cosec x + \cot x \right) \right]_\frac{\pi}{4}^\frac{\pi}{2} + \left[ \log \left( 1 + \cos x \right) \right]_\frac{\pi}{4}^\frac{\pi}{2} \]
\[ \Rightarrow I = - \log \left( 1 + \infty \right) + \log \left( \sqrt{2} + 1 \right) + \log \left( 1 + 0 \right) - \log \left( 1 + \frac{1}{\sqrt{2}} \right)\]
\[ \Rightarrow I = \log \left( \sqrt{2} + 1 \right) - \log \left( \frac{\sqrt{2} + 1}{\sqrt{2}} \right)\]
\[ \Rightarrow I = \log \left( \frac{\sqrt{2}\left( \sqrt{2} + 1 \right)}{\left( \sqrt{2} + 1 \right)} \right)\]
\[ \Rightarrow I = \log\sqrt{2}\]
\[ \Rightarrow I = \frac{1}{2}\log 2\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.