Let I=∫π6π311+tanxdx.................(1)=∫π6π311+tan(π3+π6−x)dx=∫π6π311+cotxdx....................(2)Adding (1) and (2)Adding (1) and (2)2I=∫π6π3(11+tanx+11+cotx)dx=∫π6π3(1+cotx+1+tanx1+cotx+tanx+tanxcotx)dx=∫π6π32+cotx+tanx2+cotx+tanxdx=∫π6π3dx=[x]π6π3=π3−π6∴2I=π6 Hence I=π12
If f(a+b−x)=f(x) , then prove that ∫abxf(x)dx=a+b2∫abf(x)dx
Evaluate each of the following integral:
If f(x)=∫0xtsintdt, the write the value of f′(x)
The value of the integral ∫0∞x(1+x)(1+x2)dx
If ∫0a11+4x2dx=π8, then a equals
∫01cos−1(1−x21+x2)dx
∫0π/2x2cos2xdx
∫01x(tan−1x)2dx
∫01|sin2πx|dx
∫0π/211+tan3xdx
∫−π/4π/4|tanx|dx
∫0πcos2xlogsinxdx
∫01cot−1(1−x+x2)dx
∫23e−xdx
Using second fundamental theorem, evaluate the following:
d∫0π21+cosx dx
Evaluate the following:
f(x) = c,,otherwise{cx,0<x<10, otherwise Find 'c" if fd∫01f(x) dx = 2