मराठी

The Value of the Integral ∞ ∫ 0 X ( 1 + X ) ( 1 + X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 

पर्याय

  • \[\frac{\pi}{2}\]
  • \[\frac{\pi}{4}\]
  • \[\frac{\pi}{6}\]
  • \[\frac{\pi}{3}\]
MCQ

उत्तर

\[\frac{\pi}{4}\]

\[\text{We have}, \]

\[I = \int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\text{Putting} x = \tan \theta\]

\[ \Rightarrow dx = \sec^2 \theta d\theta\]

\[When\ x \to 0 ; \theta \to 0\]

\[and\ x \to \infty ; \theta \to \frac{\pi}{2}\]

\[\text{Now, integral becomes}\]

\[I = \int\limits_0^\frac{\pi}{2} \frac{\tan \theta}{\left( 1 + \tan \theta \right) \sec^2 \theta} \sec^2 \theta d\theta\]

\[ = \int\limits_0^\frac{\pi}{2} \frac{\tan \theta}{1 + \tan \theta} d\theta\]

\[ = \int\limits_0^\frac{\pi}{2} \frac{\frac{\sin \theta}{cos \theta}}{1 + \frac{\sin \theta}{\cos \theta}}d\theta\]

\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\sin \theta}{\sin \theta + \cos \theta}d\theta . . . . . \left( 1 \right)\]

\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\sin\left( \frac{\pi}{2} - \theta \right)}{\sin\left( \frac{\pi}{2} - \theta \right) + \cos\left( \frac{\pi}{2} - \theta \right)}d\theta .................\left[ \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]

\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\cos \theta}{\cos \theta + \sin \theta}d\theta\]

\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\cos\theta}{\sin\theta + \cos\theta}d\theta . . . . . \left( 2 \right)\]

\[Adding\ \left( 1 \right) and \left( 2 \right), \text{we get}\]

\[2I = \int\limits_0^\frac{\pi}{2} \frac{\sin\theta + \cos\theta}{\sin\theta + \cos\theta} d\theta\]

\[ \Rightarrow 2I = \int\limits_0^\frac{\pi}{2} d\theta\]

\[ \Rightarrow 2I = \frac{\pi}{2}\]

\[ \Rightarrow I = \frac{\pi}{4}\]

\[ \therefore \int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - MCQ [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
MCQ | Q 17 | पृष्ठ ११८

संबंधित प्रश्‍न

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


Find : `∫_a^b logx/x` dx


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following:

`Γ (9/2)`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×