Advertisements
Advertisements
प्रश्न
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
पर्याय
- \[\frac{\pi}{2}\]
- \[\frac{\pi}{4}\]
- \[\frac{\pi}{6}\]
- \[\frac{\pi}{3}\]
उत्तर
\[\text{We have}, \]
\[I = \int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\text{Putting} x = \tan \theta\]
\[ \Rightarrow dx = \sec^2 \theta d\theta\]
\[When\ x \to 0 ; \theta \to 0\]
\[and\ x \to \infty ; \theta \to \frac{\pi}{2}\]
\[\text{Now, integral becomes}\]
\[I = \int\limits_0^\frac{\pi}{2} \frac{\tan \theta}{\left( 1 + \tan \theta \right) \sec^2 \theta} \sec^2 \theta d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \frac{\tan \theta}{1 + \tan \theta} d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \frac{\frac{\sin \theta}{cos \theta}}{1 + \frac{\sin \theta}{\cos \theta}}d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\sin \theta}{\sin \theta + \cos \theta}d\theta . . . . . \left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\sin\left( \frac{\pi}{2} - \theta \right)}{\sin\left( \frac{\pi}{2} - \theta \right) + \cos\left( \frac{\pi}{2} - \theta \right)}d\theta .................\left[ \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\cos \theta}{\cos \theta + \sin \theta}d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\cos\theta}{\sin\theta + \cos\theta}d\theta . . . . . \left( 2 \right)\]
\[Adding\ \left( 1 \right) and \left( 2 \right), \text{we get}\]
\[2I = \int\limits_0^\frac{\pi}{2} \frac{\sin\theta + \cos\theta}{\sin\theta + \cos\theta} d\theta\]
\[ \Rightarrow 2I = \int\limits_0^\frac{\pi}{2} d\theta\]
\[ \Rightarrow 2I = \frac{\pi}{2}\]
\[ \Rightarrow I = \frac{\pi}{4}\]
\[ \therefore \int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate the following integral:
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Solve each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is