Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
उत्तर
\[\int_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) d x\]
\[Let, x = \tan\theta,\text{ then }dx = se c^2 \theta d\theta\]
\[\text{When, }x \to 0 ; \theta \to 0\]
\[\text{And }x \to 1 ; \theta \to \frac{\pi}{4}\]
Therefore the integral becomes
\[ \int_0^\frac{\pi}{4} \tan^{- 1} \left( \frac{2\tan\theta}{1 - \tan^2 \theta} \right) se c^2 \theta d\theta\]
\[ = \int_0^\frac{\pi}{4} \tan^{- 1} \left( \tan2\theta \right) se c^2 \theta d\theta\]
\[ = 2 \int_0^\frac{\pi}{4} \theta se c^2 \theta d\theta\]
\[ = 2 \left[ \theta \tan\theta \right]_0^\frac{\pi}{4} - 2 \int_0^\frac{\pi}{4} \tan\theta d\theta\]
\[ = 2 \left[ \theta \tan\theta \right]_0^\frac{\pi}{4} - 2 \left[ - \log\left( \cos\theta \right) \right]_0^\frac{\pi}{4} \]
\[\]
\[ = 2\left( \frac{\pi}{4} - 0 \right) + 2\left[ \log\frac{1}{\sqrt{2}} - 0 \right]\]
\[ = \frac{\pi}{2} - \log2\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Find : `∫_a^b logx/x` dx
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`