मराठी

1 ∫ 0 Tan − 1 ( 2 X 1 − X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

बेरीज

उत्तर

\[\int_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) d x\]

\[Let, x = \tan\theta,\text{ then }dx = se c^2 \theta d\theta\]

\[\text{When, }x \to 0 ; \theta \to 0\]

\[\text{And }x \to 1 ; \theta \to \frac{\pi}{4}\]

Therefore the integral becomes

\[ \int_0^\frac{\pi}{4} \tan^{- 1} \left( \frac{2\tan\theta}{1 - \tan^2 \theta} \right) se c^2 \theta d\theta\]

\[ = \int_0^\frac{\pi}{4} \tan^{- 1} \left( \tan2\theta \right) se c^2 \theta d\theta\]

\[ = 2 \int_0^\frac{\pi}{4} \theta se c^2 \theta d\theta\]

\[ = 2 \left[ \theta \tan\theta \right]_0^\frac{\pi}{4} - 2 \int_0^\frac{\pi}{4} \tan\theta d\theta\]

\[ = 2 \left[ \theta \tan\theta \right]_0^\frac{\pi}{4} - 2 \left[ - \log\left( \cos\theta \right) \right]_0^\frac{\pi}{4} \]

\[\]

\[ = 2\left( \frac{\pi}{4} - 0 \right) + 2\left[ \log\frac{1}{\sqrt{2}} - 0 \right]\]

\[ = \frac{\pi}{2} - \log2\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Revision Exercise [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Revision Exercise | Q 7 | पृष्ठ १२१

संबंधित प्रश्‍न

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^\infty e^{- x} dx .\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Find : `∫_a^b logx/x` dx


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×