Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
उत्तर
\[\int_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) d x\]
\[Let, x = \tan\theta,\text{ then }dx = se c^2 \theta d\theta\]
\[\text{When, }x \to 0 ; \theta \to 0\]
\[\text{And }x \to 1 ; \theta \to \frac{\pi}{4}\]
Therefore the integral becomes
\[ \int_0^\frac{\pi}{4} \tan^{- 1} \left( \frac{2\tan\theta}{1 - \tan^2 \theta} \right) se c^2 \theta d\theta\]
\[ = \int_0^\frac{\pi}{4} \tan^{- 1} \left( \tan2\theta \right) se c^2 \theta d\theta\]
\[ = 2 \int_0^\frac{\pi}{4} \theta se c^2 \theta d\theta\]
\[ = 2 \left[ \theta \tan\theta \right]_0^\frac{\pi}{4} - 2 \int_0^\frac{\pi}{4} \tan\theta d\theta\]
\[ = 2 \left[ \theta \tan\theta \right]_0^\frac{\pi}{4} - 2 \left[ - \log\left( \cos\theta \right) \right]_0^\frac{\pi}{4} \]
\[\]
\[ = 2\left( \frac{\pi}{4} - 0 \right) + 2\left[ \log\frac{1}{\sqrt{2}} - 0 \right]\]
\[ = \frac{\pi}{2} - \log2\]
APPEARS IN
संबंधित प्रश्न
If f(2a − x) = −f(x), prove that
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following:
Γ(4)
Choose the correct alternative:
If n > 0, then Γ(n) is