Advertisements
Advertisements
प्रश्न
उत्तर
We know that
\[\left| x + 1 \right| = \begin{cases}x + 1, & \text{if }x + 1 \geq 0 \\ - \left( x + 1 \right), & \text{if }x + 1 < 0\end{cases} = \begin{cases}x + 1, & \text{if }x \geq - 1 \\ - \left( x + 1 \right), & \text{if }x < - 1\end{cases}\]
\[\left| x - 1 \right| = \begin{cases}x - 1, & \text{if }x - 1 \geq 0 \\ - \left( x - 1 \right), & \text{if }x - 1 < 0\end{cases} = \begin{cases}x - 1, & \text{if }x \geq 1 \\ - \left( x - 1 \right), & \text{if }x < 1\end{cases}\]
When
When
When
\[\therefore \int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]
\[ = \int_{- 1}^0 \left( 2 - x \right)dx + \int_0^1 \left( x + 2 \right)dx + \int_1^2 3xdx\]
\[ = \left.\frac{\left( 2 - x \right)^2}{2 \times \left( - 1 \right)}\right|_{- 1}^0 + \left.\frac{\left( x + 2 \right)^2}{2}\right|_0^1 + \left.3 \times \frac{x^2}{2}\right|_1^2 \]
\[ = - \frac{1}{2}\left( 4 - 9 \right) + \frac{1}{2}\left( 9 - 4 \right) + \frac{3}{2}\left( 4 - 1 \right)\]
\[ = \frac{5}{2} + \frac{5}{2} + \frac{9}{2}\]
\[ = \frac{19}{2}\]
APPEARS IN
संबंधित प्रश्न
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.