हिंदी

∫ 2 − 1 ( | X + 1 | + | X | + | X − 1 | ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 

योग

उत्तर

We know that

\[\left| x + 1 \right| = \begin{cases}x + 1, & \text{if }x + 1 \geq 0 \\ - \left( x + 1 \right), & \text{if }x + 1 < 0\end{cases} = \begin{cases}x + 1, & \text{if }x \geq - 1 \\ - \left( x + 1 \right), & \text{if }x < - 1\end{cases}\]

\[\left| x \right| = \begin{cases}x, & \text{if }x \geq 0 \\ - x, & \text{if }x < 0\end{cases}\]

\[\left| x - 1 \right| = \begin{cases}x - 1, & \text{if }x - 1 \geq 0 \\ - \left( x - 1 \right), & \text{if }x - 1 < 0\end{cases} = \begin{cases}x - 1, & \text{if }x \geq 1 \\ - \left( x - 1 \right), & \text{if }x < 1\end{cases}\]

When

\[- 1 \leq x \leq 0,\]
\[\left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| = x + 1 + \left( - x \right) + \left[ - \left( x - 1 \right) \right] = 2 - x\]

When

\[0 \leq x \leq 1,\]
\[\left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| = x + 1 + x + \left[ - \left( x - 1 \right) \right] = x + 2\]

When

\[1 \leq x \leq 2,\]
\[\left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| = x + 1 + x + x - 1 = 3x\]

\[\therefore \int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]
\[ = \int_{- 1}^0 \left( 2 - x \right)dx + \int_0^1 \left( x + 2 \right)dx + \int_1^2 3xdx\]
\[ = \left.\frac{\left( 2 - x \right)^2}{2 \times \left( - 1 \right)}\right|_{- 1}^0 + \left.\frac{\left( x + 2 \right)^2}{2}\right|_0^1 + \left.3 \times \frac{x^2}{2}\right|_1^2 \]
\[ = - \frac{1}{2}\left( 4 - 9 \right) + \frac{1}{2}\left( 9 - 4 \right) + \frac{3}{2}\left( 4 - 1 \right)\]
\[ = \frac{5}{2} + \frac{5}{2} + \frac{9}{2}\]
\[ = \frac{19}{2}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.3 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.3 | Q 20 | पृष्ठ ५६

संबंधित प्रश्न

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×