Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_1^2 \frac{x}{\left( x + 1 \right)\left( x + 2 \right)} d\ x\ . Then, \]
\[I = \int_1^2 \left( \frac{- 1}{\left( x + 1 \right)} + \frac{2}{\left( x + 2 \right)} \right) d x\]
\[ \Rightarrow I = - \int_1^2 \frac{1}{\left( x + 1 \right)} dx + 2 \int_1^2 \frac{1}{\left( x + 2 \right)} dx\]
\[ \Rightarrow I = \left[ - \log \left( x + 1 \right) + 2 \log \left( x + 2 \right) \right]_1^2 \]
\[ \Rightarrow I = - \log 3 + 2 \log 4 + \log 2 - 2 \log 3\]
\[ \Rightarrow I = 5 \log 2 - 3 \log 3\]
\[ \Rightarrow I = \log 2^5 - \log 3^3 \]
\[ \Rightarrow I = \log \frac{32}{27}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.