Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} x^2 \cos 2x d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ x^2 \frac{\sin 2x}{2} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2x \frac{\sin 2x}{2} d x\]
\[ \Rightarrow I = \left[ x^2 \frac{\sin 2x}{2} \right]_0^\frac{\pi}{2} - \left[ - x \frac{\cos 2x}{2} \right]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} - 1 \frac{\cos 2x}{2} d x\]
\[ \Rightarrow I = \left[ x^2 \frac{\sin 2x}{2} \right]_0^\frac{\pi}{2} + \left[ x \frac{\cos 2x}{2} \right]_0^\frac{\pi}{2} - \left[ \frac{\sin 2x}{4} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 0 - \frac{\pi}{4} - 0\]
\[ \Rightarrow I = - \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Solve each of the following integral:
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Find: `int logx/(1 + log x)^2 dx`