Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{4} \sin^3 2t\ \cos 2t\ d\ t . Then, \]
\[Let\ \sin 2t = u . Then, 2 \cos\ 2t\ dt = du\]
\[When\ t = 0, u = 0\ and\ t\ = \frac{\pi}{4}, u = 1\]
\[ \therefore I = \frac{1}{2} \int_0^1 u^3 du\]
\[ \Rightarrow I = \frac{1}{2} \left[ \frac{u^4}{4} \right]_0^1 \]
\[ \Rightarrow I = \frac{1}{2}\left( \frac{1}{4} - 0 \right)\]
\[ \Rightarrow I = \frac{1}{8}\]
APPEARS IN
संबंधित प्रश्न
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is