Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7 - x}} d x ..................(1)\]
\[ = \int_0^7 \frac{\sqrt[3]{7 - x}}{\sqrt[3]{7 - x} + \sqrt[3]{x}} dx .................\left(\text{Using }\int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx \right)\]
\[ = \int_0^7 \frac{\sqrt[3]{7 - x}}{\sqrt[3]{x} + \sqrt[3]{7 - x}} dx ..................(2)\]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_0^7 \frac{\sqrt[3]{x} + \sqrt[3]{7 - x}}{\sqrt[3]{x} + \sqrt[3]{7 - x}} d x \]
\[ = \int_0^7 dx\]
\[ = \left[ x \right]_0^7 = 7\]
\[Hence\ I = \frac{7}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
Write the coefficient a, b, c of which the value of the integral
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`