हिंदी

Evaluate the following: d∫(x2+2)x+1dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`

योग

उत्तर

I = `int (x^2 + 2)/(x + 1) "d"x`

= `int (x^2 - 1 + 3)/(x + 1) "d"x`

= `int ((x - 1)(x + 1) + 3)/(x + 1) "d"x`

= `int (x - 1 + 3/(x + 1)) "d"x`

= `int (x - 1) "d"x + 3int 1/(x + 1) "d"x`

= `x^2/2 - x + 3 log |(x + 1)| + "C"`

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 3 | पृष्ठ १६३

संबंधित प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_2^3 \frac{1}{x}dx\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×