Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
उत्तर
I = `int (x^2 + 2)/(x + 1) "d"x`
= `int (x^2 - 1 + 3)/(x + 1) "d"x`
= `int ((x - 1)(x + 1) + 3)/(x + 1) "d"x`
= `int (x - 1 + 3/(x + 1)) "d"x`
= `int (x - 1) "d"x + 3int 1/(x + 1) "d"x`
= `x^2/2 - x + 3 log |(x + 1)| + "C"`
APPEARS IN
संबंधित प्रश्न
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.