Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let }\ I = \int_\frac{\pi}{2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) d x . Then, \]
\[I = \int_\frac{\pi}{2}^\pi e^x \left( \frac{1 - 2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin^2 \frac{x}{2}} \right) dx .................\left[ As, \sin A = 2 \sin \frac{A}{2} \cos \frac{A}{2}, \cos A = 1 - 2 \sin^2 \frac{A}{2} \right]\]
\[ \Rightarrow I = \int_\frac{\pi}{2}^\pi e^x \left( \frac{1}{2} {cosec}^2 \frac{x}{2} - \cot \frac{x}{2} \right) dx\]
\[ \Rightarrow I = \int_\frac{\pi}{2}^\pi \frac{1}{2} e^x {cosec}^2 \frac{x}{2} dx - \int_\frac{\pi}{2}^\pi e^x \cot \frac{x}{2} dx\]
\[\text{Integrating second term by parts}\]
\[I = \left\{ - \left[ e^x \cot \frac{x}{2} \right]_\frac{\pi}{2}^\pi - \int_\frac{\pi}{2}^\pi \frac{1}{2} e^x {cosec}^2 \frac{x}{2} dx \right\} + \int_\frac{\pi}{2}^\pi \frac{1}{2} e^x {cosec}^2 \frac{x}{2} dx\]
\[ \Rightarrow I = - \left[ 0 - e^\frac{\pi}{2} \right]\]
\[ \Rightarrow I = e^\frac{\pi}{2} \]
APPEARS IN
संबंधित प्रश्न
If f(2a − x) = −f(x), prove that
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
Γ(4)
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: