Advertisements
Advertisements
प्रश्न
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
उत्तर
\[\int_1^2 \frac{x + 3}{x\left( x + 2 \right)} d x\]
\[ = \int_1^2 \frac{x + 2 + 1}{x\left( x + 2 \right)} d x\]
\[ = \int_1^2 \frac{1}{x}dx + \int_1^2 \frac{1}{x\left( x + 2 \right)}dx\]
\[ = \int_1^2 \frac{1}{x}dx + \frac{1}{2} \int_1^2 \frac{\left( x + 2 \right) - x}{x\left( x + 2 \right)}dx\]
\[ = \int_1^2 \frac{1}{x}dx + \frac{1}{2} \int_1^2 \frac{1}{x}dx - \frac{1}{2} \int_1^2 \frac{1}{x + 2}dx\]
\[ = \frac{3}{2} \int_1^2 \frac{1}{x}dx - \frac{1}{2} \int_1^2 \frac{1}{x + 2}dx\]
\[ = \frac{3}{2} \left[ \log x \right]_1^2 - \frac{1}{2} \left[ \log\left( x + 2 \right) \right]_1^2 \]
\[ = \frac{3}{2}\log2 - \frac{1}{2}\log4 + \frac{1}{2}\log3\]
\[ = \frac{3}{2}\log2 - \log2 + \frac{1}{2}\log3\]
\[ = \frac{1}{2}\log2 + \frac{1}{2}\log3\]
\[ = \frac{1}{2}\log6\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`