हिंदी

2 ∫ 1 X + 3 X ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]

योग

उत्तर

\[\int_1^2 \frac{x + 3}{x\left( x + 2 \right)} d x\]

\[ = \int_1^2 \frac{x + 2 + 1}{x\left( x + 2 \right)} d x\]

\[ = \int_1^2 \frac{1}{x}dx + \int_1^2 \frac{1}{x\left( x + 2 \right)}dx\]

\[ = \int_1^2 \frac{1}{x}dx + \frac{1}{2} \int_1^2 \frac{\left( x + 2 \right) - x}{x\left( x + 2 \right)}dx\]

\[ = \int_1^2 \frac{1}{x}dx + \frac{1}{2} \int_1^2 \frac{1}{x}dx - \frac{1}{2} \int_1^2 \frac{1}{x + 2}dx\]

\[ = \frac{3}{2} \int_1^2 \frac{1}{x}dx - \frac{1}{2} \int_1^2 \frac{1}{x + 2}dx\]

\[ = \frac{3}{2} \left[ \log x \right]_1^2 - \frac{1}{2} \left[ \log\left( x + 2 \right) \right]_1^2 \]

\[ = \frac{3}{2}\log2 - \frac{1}{2}\log4 + \frac{1}{2}\log3\]

\[ = \frac{3}{2}\log2 - \log2 + \frac{1}{2}\log3\]

\[ = \frac{1}{2}\log2 + \frac{1}{2}\log3\]

\[ = \frac{1}{2}\log6\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 26 | पृष्ठ १२१

संबंधित प्रश्न

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^\infty e^{- x} dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×