Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
उत्तर
\[I=\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Using partial fraction,
\[\frac{x}{(1 + x)(1 + x^2 )}\frac{A}{1 + x} + \frac{Bx + C}{1 + x^2}\]
\[x = A(1 + x^2 ) + (Bx + C)(1 + x)\]
\[x = A + A x^2 + Bx + B x^2 + C + Cx\]
\[B + C = 1\]
\[A + C = 0\]
\[A + B = 0\]
\[so, A = \frac{- 1}{2}, B = \frac{1}{2}, C = \frac{1}{2}\]
Putting the values of A, B and C we get
\[\frac{\frac{- 1}{2}}{1 + x} + \frac{\frac{1}{2}x + \frac{1}{2}}{1 + x^2}\]
\[ = \frac{- 1}{2}\left[ \frac{1}{1 + x} \right] + \frac{1}{2}\left[ \frac{x + 1}{1 + x^2} \right]\]
\[\text{Therefore, }I = \int_0^\infty \frac{- 1}{2}\left[ \frac{1}{1 + x} \right] + \frac{1}{2}\left[ \frac{x + 1}{1 + x^2} \right]\]
\[I = \frac{- 1}{2} \left[ \log\left| 1 + x \right| \right]_0^\infty + \frac{1}{2} \int_0^\infty \left[ \frac{x}{1 + x^2} + \frac{1}{1 + x^2} \right]\]
\[I = \frac{- 1}{2} \left[ log\left| 1 + x \right| \right]_0^\infty + \frac{1}{2 \times 2} \int_0^\infty \left[ \frac{2x}{1 + x^2} \right] + \frac{1}{2} \int_0^\infty \frac{1}{1 + x^2}\]
\[I = \frac{- 1}{2} \left[ \log\left| 1 + x \right| \right]_0^\infty + \frac{1}{4} \left[ \log\left| 1 + x^2 \right| \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]
\[I = \frac{- 1}{2} \left[ log\left| 1 + x \right| \right]_0^\infty + \frac{1}{2} \times \frac{1}{2} \left[ log\left| 1 + x^2 \right| \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]
\[I = \frac{1}{2} \left[ \log\frac{\sqrt{x^2 + 1}}{x + 1} \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]
\[I = \frac{1}{2} \left[ log\frac{\sqrt{1 + \frac{1}{x^2}}}{1 + \frac{1}{x}} \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]
\[I = \frac{1}{2}\left[ 0 \right] + \frac{1}{2}\left[ ta n^{- 1} \infty - ta n^{- 1} 0 \right]\]
`I=pi/4`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
Evaluate :
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`