हिंदी

∞ ∫ 0 X ( 1 + X ) ( 1 + X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

योग

उत्तर

\[I=\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

Using partial fraction,

\[\frac{x}{(1 + x)(1 + x^2 )}\frac{A}{1 + x} + \frac{Bx + C}{1 + x^2}\]

\[x = A(1 + x^2 ) + (Bx + C)(1 + x)\]

\[x = A + A x^2 + Bx + B x^2 + C + Cx\]

\[B + C = 1\]

\[A + C = 0\]

\[A + B = 0\]

\[so, A = \frac{- 1}{2}, B = \frac{1}{2}, C = \frac{1}{2}\]

Putting the values of A, B and C we get

\[\frac{\frac{- 1}{2}}{1 + x} + \frac{\frac{1}{2}x + \frac{1}{2}}{1 + x^2}\]

\[ = \frac{- 1}{2}\left[ \frac{1}{1 + x} \right] + \frac{1}{2}\left[ \frac{x + 1}{1 + x^2} \right]\]

\[\text{Therefore, }I = \int_0^\infty \frac{- 1}{2}\left[ \frac{1}{1 + x} \right] + \frac{1}{2}\left[ \frac{x + 1}{1 + x^2} \right]\]

\[I = \frac{- 1}{2} \left[ \log\left| 1 + x \right| \right]_0^\infty + \frac{1}{2} \int_0^\infty \left[ \frac{x}{1 + x^2} + \frac{1}{1 + x^2} \right]\]

\[I = \frac{- 1}{2} \left[ log\left| 1 + x \right| \right]_0^\infty + \frac{1}{2 \times 2} \int_0^\infty \left[ \frac{2x}{1 + x^2} \right] + \frac{1}{2} \int_0^\infty \frac{1}{1 + x^2}\]

\[I = \frac{- 1}{2} \left[ \log\left| 1 + x \right| \right]_0^\infty + \frac{1}{4} \left[ \log\left| 1 + x^2 \right| \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]

\[I = \frac{- 1}{2} \left[ log\left| 1 + x \right| \right]_0^\infty + \frac{1}{2} \times \frac{1}{2} \left[ log\left| 1 + x^2 \right| \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]

\[I = \frac{1}{2} \left[ \log\frac{\sqrt{x^2 + 1}}{x + 1} \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]

\[I = \frac{1}{2} \left[ log\frac{\sqrt{1 + \frac{1}{x^2}}}{1 + \frac{1}{x}} \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]

\[I = \frac{1}{2}\left[ 0 \right] + \frac{1}{2}\left[ ta n^{- 1} \infty - ta n^{- 1} 0 \right]\]

`I=pi/4`

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 15 | पृष्ठ १२१

संबंधित प्रश्न

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

\[\int\limits_2^3 \frac{1}{x}dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×