Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
उत्तर
\[Let I = \int_0^\pi \frac{x \tan x}{sec x + \tan x} d x ...........(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \tan\left( \pi - x \right)}{sec\left( \pi - x \right) + \tan\left( \pi - x \right)} d x\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \tan x}{\sec x + \tan x} d x ................(2)\]
Adding (1) and (2) we get
\[2I = \int_0^\pi \frac{\pi \tan x}{\sec x + \tan x} d x\]
\[ = \pi \int_0^\pi \frac{sinx}{1 + sin x}dx\]
\[ = \pi \int_0^\pi \frac{1 + sin x - 1}{1 + sin x}dx\]
\[ = \pi \int_0^\pi \left[ 1 - \frac{1}{1 + sinx} \right]dx\]
\[ = \pi \left[ x \right]_0^\pi - \pi \int_0^\pi \frac{1}{1 + \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \pi^2 - \pi \int_0^\pi \frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + 2\tan\frac{x}{2}}dx\]
\[ = \pi^2 - \pi \int_0^\pi \frac{\sec^2 \frac{x}{2}}{\left( 1 + \tan\frac{x}{2} \right)^2}dx\]
\[ = \pi^2 + \pi \left[ \frac{2}{1 + \tan\frac{x}{2}} \right]_0^\pi \]
\[ = \pi^2 + \pi\left( 0 - 2 \right)\]
\[ = \pi^2 - 2\pi\]
\[ = \pi\left( \pi - 2 \right)\]
\[\text{Hence }I = \frac{\pi}{2}\left( \pi - 2 \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^4 x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`