हिंदी

Π ∫ 0 X Tan X Sec X + Tan X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]

योग

उत्तर

\[Let I = \int_0^\pi \frac{x \tan x}{sec x + \tan x} d x ...........(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \tan\left( \pi - x \right)}{sec\left( \pi - x \right) + \tan\left( \pi - x \right)} d x\]

\[ = \int_0^\pi \frac{\left( \pi - x \right) \tan x}{\sec x + \tan x} d x ................(2)\]

Adding (1) and (2) we get

\[2I = \int_0^\pi \frac{\pi \tan x}{\sec x + \tan x} d x\]

\[ = \pi \int_0^\pi \frac{sinx}{1 + sin x}dx\]

\[ = \pi \int_0^\pi \frac{1 + sin x - 1}{1 + sin x}dx\]

\[ = \pi \int_0^\pi \left[ 1 - \frac{1}{1 + sinx} \right]dx\]

\[ = \pi \left[ x \right]_0^\pi - \pi \int_0^\pi \frac{1}{1 + \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]

\[ = \pi^2 - \pi \int_0^\pi \frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + 2\tan\frac{x}{2}}dx\]

\[ = \pi^2 - \pi \int_0^\pi \frac{\sec^2 \frac{x}{2}}{\left( 1 + \tan\frac{x}{2} \right)^2}dx\]

\[ = \pi^2 + \pi \left[ \frac{2}{1 + \tan\frac{x}{2}} \right]_0^\pi \]

\[ = \pi^2 + \pi\left( 0 - 2 \right)\]

\[ = \pi^2 - 2\pi\]

\[ = \pi\left( \pi - 2 \right)\]

\[\text{Hence }I = \frac{\pi}{2}\left( \pi - 2 \right)\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 51 | पृष्ठ १२२

संबंधित प्रश्न

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_1^e \log x\ dx =\]

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^4 x dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×