Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} d x . Then, \]
\[I = \int_0^1 \left( \frac{1}{\sqrt{1 + x} - \sqrt{x}} \times \frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} + \sqrt{x}} \right) d x\]
\[ \Rightarrow I = \int_0^1 \frac{\sqrt{1 + x} + \sqrt{x}}{1 + x - x} d x\]
\[ \Rightarrow I = \int_0^1 \left( \sqrt{1 + x} + \sqrt{x} \right) dx\]
\[ \Rightarrow I = \left[ \frac{2}{3} \left( 1 + x \right)^\frac{3}{2} + \frac{2}{3} x^\frac{3}{2} \right]_0^1 \]
\[ \Rightarrow I = \frac{2}{3} \times 2\sqrt{2} + \frac{2}{3} - \frac{2}{3}\]
\[ \Rightarrow I = \frac{4\sqrt{2}}{3}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate the following integral:
Evaluate each of the following integral:
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int x^3/(x + 1)` is equal to ______.