Advertisements
Advertisements
प्रश्न
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
उत्तर
Using the property
`int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`
Let I = `int_0^(pi/2) (sin^7x)/(sin^7x + cos^7x) "d"x` ........(1)
I = `int_0^(pi/2) (sin^7(pi/2 - x))/(sin^7(pi/2 - x) + cos^7(pi/2 - x)) "d"x`
I = `int_0^(pi/2) (cos^7x)/(cos^7x + sin^x) "d"x` .........(2)
Adding (1) and (2)
I + I = `int_0^(pi/2) (sin^7x + cos^7x)/(sin^7x + cos^7x "d"x`
2I `int_0^(pi/2) "d"x`
2I = `[x]_0^(pi/2) = [pi/2 - 0]`
2I = `pi/2`
⇒ I = `pi/4`
APPEARS IN
संबंधित प्रश्न
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`