Advertisements
Advertisements
प्रश्न
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
विकल्प
- \[9 \left( \frac{\pi}{2} \right)^9\]
- \[10 \left( \frac{\pi}{2} \right)^9\]
- \[\left( \frac{\pi}{2} \right)^9\]
- \[9 \left( \frac{\pi}{2} \right)^8\]
उत्तर
\[10 \left( \frac{\pi}{2} \right)^9 \]
\[\text{We have}, \]
\[ I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx\]
\[ = \left[ x^{10} \left( - \cos x \right) \right]_0^\frac{\pi}{2} - \int\limits_0^{\pi/2} \left[ 10 x^9 \int\sin x dx \right]dx\]
\[ = \left[ - x^{10} \cos x \right]_0^\frac{\pi}{2} - 10 \int\limits_0^{\pi/2} x^9 \left( - \cos x \right) dx\]
\[ = - \left[ x^{10} \cos x \right]_0^\frac{\pi}{2} + 10 \int\limits_0^{\pi/2} x^9 \cos x\ dx\]
\[ = - \left[ x^{10} \cos x \right]_0^\frac{\pi}{2} + 10 \left[ x^9 \sin x \right]_0^\frac{\pi}{2} - 10 \int\limits_0^{\pi/2} 9 x^8 \sin x dx\]
\[ = - \left[ \left( \frac{\pi}{2} \right)^{10} \times 0 - 0^{10} \cos 0 \right] + 10\left[ \left( \frac{\pi}{2} \right)^9 \times 1 - 0^9 \times 0 \right] - 90 \int\limits_0^{\pi/2} x^8 \sin x dx\]
\[ = 10\left[ \left( \frac{\pi}{2} \right)^9 \times 1 \right] - 90 I_8 \]
\[ = 10 \left( \frac{\pi}{2} \right)^9 - 90 I_8 \]
\[ \therefore I_{10} + 90 I_8 = 10 \left( \frac{\pi}{2} \right)^9\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
`int_0^(2a)f(x)dx`
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.