Advertisements
Advertisements
प्रश्न
Find : `∫_a^b logx/x` dx
उत्तर
Put `log x = t ⇒ 1/x dx = dt`
⇒ `x = a ⇒ t = loga & x = b ⇒ t = log b`
`therefore I = ∫_log a ^log b t dt`
= `t^2/2|_log a^log b`
= `1/2 [(log b)^2 - (log a)^2]`
APPEARS IN
संबंधित प्रश्न
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
Evaluate :
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is